Protocol for Review of Instructional Materials for ELLs

WIDA PRIME Correlation

Scott Foresman • Addison Wesley enVisionMATH Common Core was built for the Common Core State Standards and is designed to reach all students.
Introduction

The Protocol for Review of Instructional Materials for ELLs (PRIME) has been developed by World-Class Instructional Design and Assessment (WIDA) to assist educators and publishers in examining the representation of key elements of the WIDA English language proficiency standards in their materials.

The intent of this review is for users to identify the ways in which elements of the *WIDA English Language Proficiency Standards, 2007 Edition, PreKindergarten through Grade 12* are represented in instructional materials. These materials vary from core or supplemental texts to DVDs to software programs; however, it is assumed that they all seek to provide teachers with standards-based references to use with English language learners in diverse settings across the United States.

The Protocol for Review of Instructional Materials for ELLs (PRIME) is not an evaluative tool aimed to judge the effectiveness of published materials using the WIDA English Language Proficiency (ELP) Standards. The goal of the Protocol for Review of Instructional Materials for ELLs (PRIME) is twofold:

- to assist educators in making informed decisions in selecting instructional materials for programs serving English language learners and
- to aid publishers and correlators in developing materials and communicating how their materials address key elements of the WIDA English Language Proficiency Standards

Organization

The Protocol for Review of Instructional Materials for ELLs (PRIME) is organized into two parts that together are intended to provide information about instructional materials in each of 14 criteria. **Part 1** contains information about the materials that are to be reviewed. **Part 2** is the protocol used for the review of instructional materials and includes space for page number examples and responses to the questions. An Appendix at the end of the document provides definitions of the categories included in the PRIME correlation.

Please note that the questions contained in this form are identical to those in the completed correlations on our website.

Directions for completing the Protocol for Review of Instructional Materials for ELLs (PRIME) inventory:

STEP 1: Complete information about materials being reviewed.

STEP 2: Respond to the “Yes/No” questions about the presence of the criteria in the materials.

STEP 3: Provide justification to support your “Yes” responses. (Note: If additional explanation for “No” answers is relevant to readers’ understanding of the materials, this may also be included.)
Organization of the WIDA English Language Proficiency Standards In Relation to the Protocol for Review of Instructional Materials for ELLs

The 14 PRIME criteria are in **BOLD** below.

I. Performance Definitions (Criteria that shape the ELP Standards)
 - IA. Linguistic Complexity
 - IB. Vocabulary Usage
 - IC. Language Control/Conventions

II. English Language Proficiency Standards
 - IIA. Presence of WIDA ELP Standards
 - IIB. Representation of Language Domains (Listening, Speaking, Reading, Writing)

III. Levels of English Language Proficiency (Entering, Beginning, Developing, Expanding, Bridging)
 - IIIA. Differentiation of Language
 - IIIB. Scaffolding Language Development

IV. Strands of Model Performance Indicators
 - IVA. Language Functions
 - Attached to Context
 - Higher Order Thinking
 - IVB. Content Stem
 - Coverage and Specificity of Example Topics
 - Accessibility to Grade Level Content
 - IVC. Instructional Supports
 - Sensory Support
 - Graphic Support
 - Interactive Support
Part 1: Information About Materials

Publication Title(s): Scott Foresman Addison Wesley enVisionMATH Common Core ©2012 Grades K-6

Publisher: Pearson Education, Inc.

Materials/ Program to be Reviewed: enVisionMATH Common Core ©2012 Grades K-6

Tools of Instruction included in this review: Teacher’s Resource Package

Intended Teacher Audiences: Classroom Teachers, Content Specialists, Language Teachers, Resource Teachers, and Paraprofessionals

Intended Student Audiences: Grades K-6

WIDA Framework(s) considered: Formative and Summative

Language domains addressed in material: Listening, Speaking, Reading, Writing

WIDA English Language Proficiency Standards addressed: Social and Instructional Language, The Language of Language Arts, Science, Mathematics, and Social Studies

WIDA language proficiency levels included: 2-5

Most Recently Published Edition or Website: copyright 2012 www.pearsonschool.com

In the space below explain the focus or intended use of the materials.

Written specifically to address the Common Core State Standards, enVisionMATH Common Core is based on critical foundational research and proven classroom results. enVisionMATH Common Core organizes content using exactly the same structure as the Standards for Mathematical Content. Each grade level program is organized into Topics that are organized by Domain, and all Topics for each Domain are grouped together. The focus and coherence provided by this structure allow enVisionMATH Common Core to cultivate both the procedures and the understanding called for in the Common Core State Standards.
Part 2: PRIME Correlation Tool

I. PERFORMANCE DEFINITIONS

IA. **Linguistic Complexity** (the amount and quality of speech or writing)

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

A. Do the instructional materials take into account linguistic complexity for language learners?

B. Do the instructional materials address linguistic complexity for all of the targeted proficiency levels?

C. Is linguistic complexity systematically addressed, in multiple lessons, chapters, or units, in the materials?

Justification: In the box below provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

A. In *enVisionMATH* Common Core, communication with peers and teachers is incorporated into features that explore prior knowledge, teach concepts, and make problem solving interactive. Topics begin with features that provide background knowledge, introduce the topic vocabulary, and provide intervention for learners of many levels. Topic opening activities utilize interactive learning which incorporates written and spoken discourse. For example in the feature Language of Math, students learn topic vocabulary by creating flashcards, practice using terms by labeling, or repeating a definition in their own words. Lessons begin with real-world problems that elicit thinking, reasoning, and communication with teachers, groups and partners. Within the lessons, problems labeled Writing to Explain and Communicate use word and sentence level discourse to explain and solve problems. This discourse goes beyond word/sentence construction and also uses mathematical language which includes symbols, pictures, and numbers to communicate reasoning to others. Throughout the program, students learn strategies to solve problems that are interactive like acting or role-playing and drawing/labeling. In addition, guiding questions (coded in blue) are found throughout the TE and encourage classroom participation and offer opportunity for teachers to check understanding.

B. The program uses a wide range of instructional scaffolds that assist learners of all levels. For example, lessons begin with interactive problem solving activities and a visual learning bridge that breaks down problem solving into small sequential chunks. In addition, differentiated instruction for ELL, special needs, and students working below, on, and above level are systematically presented in each topic and lesson. These utilize cooperative learning in a variety of formats that include activities like games and puzzles.

C. *enVisionMATH* Common Core is organized into topics, and within each topic there is a series of lessons that teach the content in-depth. Topics and lessons are organized in the same manner, and systematically present activities that include written and spoken interactions. Within this correlation, all examples will be taken from the Grade 4 Teacher's Edition. Please see representative examples in Topic 1 of the systematic representation of linguistic complexity:

- **Vocabulary p. 2J:** Vocabulary practice includes written and oral discourse.
- **Differentiated Instruction pp. 2I, 9B, 11B, 13B:** Students work and communicate in groups.
- **Problem-Based Interactive Learning pp. 10B, 12B, 14B:** Includes whole/small group discussion and promotes communication with teachers and peers to solve real problems.
IB. Vocabulary Usage (specificity of words, from general to specific to technical)

YES NO

A. Is vocabulary usage represented as words, phrases, and expressions in context?

☑ □ A. Mathematics is a language and enVisionMATH Common Core uses language instruction methods to teach and practice topic and lesson vocabulary. The language of Mathematics is represented in words, phrases, and expressions in context within the program. Vocabulary instruction is broken down into the following features in the Teacher’s Edition: Vocabulary Review, Vocabulary Cards, Vocabulary Activities, and vocabulary notes throughout the TE. Students transfer prior learning by reviewing vocabulary related to the topic in the Topic Opener feature. In each topic students create cards with the term, definition, and a descriptive visual. These cards can be used as flash cards or in games like matching. The feature Vocabulary Activities helps to solidify understanding and includes a range of exercises like creating graphic organizers, descriptive labeling, or creating their own definitions. Academic vocabulary is often taught within the Problem-Based Interactive Learning feature that begins each lesson. These terms are often terms that can be used in other content areas like "array" (Topic 2 page 6B), or mathematical phrases. For example, in Topic 2 on page 40B the expression "repeating pattern" is modeled and used in context. Within each lesson, problems like Write to Explain and Communicate use vocabulary in words, phrases, and in sentences to describe and solve problems. The Writing to Explain problems are specifically designed for students to use terms (with symbols, numbers, and pictures) in context in activities that describe the problem solving process. The Student Edition includes a glossary with student friendly definitions and visual supports. Additional vocabulary resources, such as the Animated Glossary, are available for each grade level program.

B. Is vocabulary usage addressed in the materials for all of the targeted levels of proficiency?

☑ □ B. Vocabulary is made accessible to the targeted levels of proficiency through the use of visual and interactive supports. Terms are practiced with written and oral discourse, connected to prior knowledge, and practiced with peers in every topic. These embedded supports help to assist comprehension for all levels of learners.

C. Are general, specific, and technical language usage systematically presented throughout the materials?

☑ □ C. Vocabulary instruction is presented systematically within every topic and lesson. View the following representative examples in Topic 2:

The Language of Math p. 37D: Vocabulary Activities are found in the introductory pages of every topic.

Topic Opener p. 37: Students review vocabulary and are presented new vocabulary.

New Vocabulary p. 37: Students make cards with visuals to use in matching games and flashcards.

Writing to Explain p. 41, 51: These problems give students the opportunity to use terms in written activities.
IC. Language Control/Conventions (comprehensibility of language)

YES	**NO**
1. Are opportunities to demonstrate language control presented in the materials?
2. Do opportunities to demonstrate language control correspond to all targeted levels of language proficiency?
3. Are opportunities to demonstrate language control systematically presented in the materials in multiple chapters, lessons, or units?

Justification: In the box below provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

A. enVisionMATH presents opportunities to practice language control throughout the topics and lessons. Sentence level interaction and writing is located in activities that encourage discussion and elaboration, cooperative problem solving, and problems that require a written response. The Problem-Based Interactive Learning is a highly communicative feature that begins each lesson. Students work in groups or with partners in a multisensory activity that encourages expanded oral and written student responses. Within the practice and assessment sections of each lesson, Write to Explain problems use word and sentence level language in combination with pictures, numbers, and symbols. These help students to develop understanding and also enable teachers to identify students that lack comprehension of the concept. Vocabulary activities also contain opportunities for students to use terms within sentences. For example, students may rewrite definitions in their own words or use the term with everyday vocabulary in a sentence or discussion. Throughout the Teacher’s Edition, background information activities provide information that elicits classroom discussion and activities that require research, writing, and presenting. In addition, the TE provides teachers with guiding questions in every aspect of the lesson that encourage ongoing classroom discussion and prompts that expand student responses.

B. Opportunities to practice language control correspond to learners of the targeted grade and proficiency levels. The curriculum is designed to include scaffolds within the instructional material as well as specific differentiated instruction for intervention and extension. These lessons give opportunity for students to practice terms and language in interactive formats.

C. Activities that give opportunities to practice language control and presented systematically throughout each topic and lesson. Please view the following representative examples in Topic 3:

- Vocabulary Activities p. 63D: Students practice using the math terms in phrases and sentences.
- Guiding Questions pp. 66B, 67, 68: View the questions in blue that encourage elaboration and classroom participation.
- Writing to Explain pp. 69, 71, 75: Problems that require an extended written response are found within all lessons.
- Problem-Based Interactive Learning pp. 66B, 68B, 70B, 74B: These problems require extended communication that include small-group and whole-class discussion.
II. ENGLISH LANGUAGE PROFICIENCY (ELP) STANDARDS

IIA. Presence of WIDA English Language Proficiency Standards

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td></td>
</tr>
</tbody>
</table>

A. Are social and instructional language and one or more of the remaining WIDA Standards (the language of Language Arts, of Mathematics, of Science, and of Social Studies) present in the materials?

B. Do the materials systematically integrate Social and Instructional Language and the language of the targeted content area(s)?

Justification: In the box below provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

A. Social and instructional language and the language of Language Arts, Mathematics, Science, and Social Studies are present in enVisionMATH Common Core. The Topic Opener includes a Math Project activity that directly links content to Social Studies and Science. These include activities that utilize tools like maps, include research, and students create final projects that can be displayed in the classroom. For example, the Topic 10 Math Project connects to Social Studies content. Students learn about the Audobon Society Christmas Bird Count and then choose a local animal, track sightings of the animal for a number of days, and then present a drawing and page of writing about their findings. Background information for each topic is presented in the features Math Background and the Topic Opener. These provide a real-world connection to the content, which includes cross-content connections. To promote an on-going interest in math, practice problems and the Visual Learning diagram often integrate content area information. For example, in Topic 4 students use a map to find the distance between cities in North and South America (See example in Topic 4 p. 87E). The language of Language Arts is integrated throughout the topics in reading and writing activities that include reading strategies and nonfiction literary readers for grades K-2. The readers are cross-cultural and cross-curricular resources that interweave math skills and concepts with facts about the history, environment, and culture of specific countries. They also present the math topics with applications in the real-world. See the following content area connections in Topic 4: Social Studies pp. 87E, 89, 92, 101; Science pp. 87, 92, 104, 105

B. Social and instructional language is integrated into the language of Mathematics throughout the enVisionMATH Common Core program. Content linking the math lesson to real-world problems require cooperative learning that encourages the use of social language. For example, each lesson begins with real-world problems that elicit thinking, reasoning, and communication (See examples in Topic 4 on pages 90B, 94B, and 96B). Instructional language is threaded into all phases of the lessons as students practice vocabulary, discuss essential questions, analyze visuals, and complete assessments. Each lesson is paced to be completed in one class; therefore, lessons have a tight and systematic structure that is mirrored throughout the topics. See examples of the instructional language and format on pages 88, 89, 91, and 93 in Topic 4.
IIB. Representation of Language Domains

YES **NO**

A. Are the language domains (listening, speaking, reading, and writing) targeted in the materials?

B. Are the targeted language domains presented within the context of language proficiency levels?

C. Are the targeted language domains systematically integrated throughout the materials?

Justification: In the box below provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

A. Listening, speaking, reading, and writing are targeted in each lesson in enVisionMATH Common Core. Activities that encourage listening and speaking skills are embedded into each lesson through activities that utilize cooperative learning, peer/group/class discussions, and through the on-going use of guided questioning in the classroom. The program teaches students to solve a range of problems that employ reading and writing skills. Reading comprehension and problem-solving skills are addressed at the beginning of each topic in the Language of Math section in the introductory pages of the Teacher's Edition (See example on page 113D in Topic 5). Reading comprehension strategies presented include identifying the purpose of text features (Topic 7), the main ideas (Topic 5 & 6), and using context clues (Topic 8), and graphic organizers (Topic 9). Grades K-2 include cross-cultural nonfiction readers that teach math concepts through stories and visual learning. See examples in the Teacher's Program Overview on pages 62-63. Writing to Explain problems are located in each lesson to help students clarify their thinking and show that they understand the process necessary to solve the problems. For example, students may write, "Using patterns, I divided 20 by 5 and added a zero to the quotient." (see the example problem in Topic 9 p. 207). Additional resources that include digital tools, also incorporate the language domains of reading and writing. For more information on available resources, see the following pages in the Teacher's Program Overview on pages 72-75.

B. enVisionMATH Common Core uses a variety of instructional scaffolds to make content and activities accessible to the targeted proficiency levels. Scaffolds include an instructional emphasis on visual learning, interactive activities, and differentiated instruction in each lesson.

C. Each topic is developed systematically and includes listening, speaking, reading, and writing activities of the same manner in each lesson. View the following representative domain-related activities in Topic 7:

- Listening/Speaking: Problem-Based Interactive Learning, pp. 166B, 170B, 172B, 174B
- Reading: Reading Comprehension and Problem Solving, p. 163D; Topic Opener, p. 163; Visual Learning Diagram, pp. 166, 167, 170, 171
- Writing: Writing to Explain, pp. 140F, 140, 143, 144; Topic Opener (Research), p. 163E
III. LEVELS OF LANGUAGE PROFICIENCY

IIIA. Differentiation of Language (for ELP levels)

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

A. Do the materials differentiate between the language proficiency levels?

B. Is differentiation of language proficiency developmentally and linguistically appropriate for the designated language levels?

C. Is differentiation of language systematically addressed throughout the materials?

Justification: In the box below provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

A. The Common Core insists that all students are supported and enVisionMATH Common Core accomplishes this through embedded differentiated instruction throughout the program. This ongoing and strategic intervention strategy provides teachers methods for grading assessments and assigning data driven differentiated instruction. Students are assessed frequently throughout the program, and intervention is provided at each crucial stage including at the beginning of the year, start of the topic, and within each lesson. After the topic assessment, the feature Differentiated Instruction presents topic-oriented instruction and enrichment activities for ELL, special needs, below-level, and advanced/gifted learners. Within the lessons, the section Close/Assess and Differentiate contains easy-to-use rubrics that assess student work on a point system. Student models are included to assist teacher assessment. Based on the points scored in the assessment, students are prescribed differentiated activities (intervention, on-level, or advanced/above-level) for intervention. These lessons use supports like group and peer learning support to enhance and extend lesson content. See the center activity formats on page 85 of the Teacher's Program Overview. All differentiated instruction activities often involve the use of hands-on manipulatives and sensory learning. Homework is also leveled for reteaching, practice, and enrichment and is designed to prepare students for end of lesson assessments. Leveled digital resources are available that include a full intensive intervention program, eTools, games, and MindPoint Quiz Show.

B. enVisionMATH's differentiated instruction is developmentally and linguistically appropriate for a wide range of learners. Lesson content includes supports that assist all levels of learners like vocabulary flashcards, games, peer/group learning, and visual learning methods that guide and model. The Interactive Learning problems that begin each topic and Problem-Based Interactive Learning activity in each lesson specifically uses instructional strategies that are helpful to ELL students. These strategies include using repetition, linking to familiar contexts, peer questioning, and role-playing (See examples in Topic 9, pp. 204, 205, 208B, and 210B). Throughout the TE, teachers are provided with error intervention and ELL strategies to respond to classroom needs.

C. Each grade level in the program is systematically structured to provide focused topics, consistent instructional routines with leveled resources. See the following examples of the systematic intervention for all levels in Topic 6:

Differentiated Instruction, p. 135C

Close/Assess and Differentiate: Lesson 6-1, pp. 141A, 141B; Lesson 6-2, pp. 143A, 143B

Extend, ELL, Error Intervention, pp. 143B, 145, 147, 147A, 148B: These sections within the TE are at point of reference intervention for multiple levels of learners.
IIIIB. Scaffolding Language Development (from ELP level to ELP level)

YES NO

A. Do the materials provide scaffolding supports for students to advance within a proficiency level?

B. Do the materials provide scaffolding supports for students to progress from one proficiency level to the next?

C. Are scaffolding supports presented systematically throughout the materials?

Justification: In the box below provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

A. enVisionMATH Common Core contains a range of scaffolding supports throughout the curriculum to assist in learner advancement. New content is connected to prior knowledge and related concepts are reviewed in the beginning pages of each topic. Visuals support all lessons and include maps, photographs, and illustrations. Visual learning, through the use of bar diagrams and other graphic organizers, develops quantitative reasoning and plays an integral role in each lesson. For example, a Visual Learning Bridge connects the interactive activity and lesson exercises. It is a pictorial sequence of ideas that helps students focus on one idea at a time and is especially supportive for visual learners. Resources like the Visual Learning Animations found at www.pearsonsuccessnet.com are available to promote a deeper understanding of the concepts. As students move through the topic lessons, they interact as partners and in groups in cooperative learning exercises. Each lesson's Problem-Based Interactive Learning Activity uses scaffolds that include role-play, peer questioning, and games. In the TE, all topics contain the feature The Language of Math, which includes reading comprehension strategies, vocabulary supports, written and oral language support, and extension readings that connect math to literature.

B. The scaffolding supports described in part A help students progress from one proficiency level to the next. From the beginning of the year and throughout the lessons and topics, the program is designed to correctly place students, frequently diagnose, and intervene if necessary to promote advancement. View the Teacher's Program Overview on pages 70-71 to view an assessment and intervention plan for enVisionMATH Common Core.

C. Scaffolding supports are presented systematically throughout the curriculum. See the following representative examples in Topic 11:

Examples of Cooperative Learning: Discussion/Small Group/Peer, pp. 256, 258B, 260B; Differentiated Instruction, pp. 259B, 261B, 267B

Examples of Interactive and Sensory Supports: Problem Based Interactive Learning, pp. 264B, 268B, 270B; Drawing, pp. 255C, 255D, 255; Differentiated Instruction, pp. 259B, 261B, 263B
IV. STRANDS OF MODEL PERFORMANCE INDICATORS

IVA. Language Functions

YES NO Context
☑ ☐ A. Do the materials include a range of language functions?
☑ ☐ B. Do the language functions attach to a context (i.e. are they incorporated into a communicative goal or activity)?
☑ ☐ C. Are language functions presented comprehensively to support the progression of language development?

Justification: In the box below provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

A. enVisionMath Common Core utilizes a range of language functions in the objectives and essential understandings, and throughout the instructional language in both the SE and TE. Language functions that can be utilized across content areas are located throughout the topics and include terms like "explain," "draw," "discuss," "describe," and "identify." Language functions more specific to mathematics like "solve," "model," "graph," "plot," "estimate," "simplify," and "calculate" permeate the instructional language. Assistance in using mathematical language is located in the features like Reading Comprehension and Problem Solving and vocabulary practice activities.

B. Language functions are always attached to an activity that promotes comprehension of the topic and lesson content. Students may be defining a vocabulary word, evaluating a graph, or solving a problem but in all cases the usage of language functions is in context.

C. Language functions are presented comprehensively and support the progression of language development. View the following examples in Topic 8 that represent the comprehensive usage of language functions:

Explain, pp. 183, 189, 190, 202; Estimate, p. 183, 191, 197; Generalize, p. 185; Reason, pp. 185, 187, 193; Model, pp. 185, 189; Solve, pp. 185, 196, 197; Construct Arguments, p. 191; Choose, pp. 190, 192, 194; Organize, p. 191B; Repeat, p. 193B
Higher Order Thinking

D. Are opportunities to engage in higher order thinking present for students of various levels of English language proficiency?

E. Are opportunities for engaging in higher order thinking systematically addressed in the materials?

Justification: In the box below provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

D. Like the Common Core Standards for Mathematics, enVisionMATH Common Core promotes the development of analytical thinking across the grade levels. The program provides scaffolded instruction to help students develop quantitative and abstract reasoning, critique reasoning, and develop problem solving skills using higher order skills like analyzing and evaluation. These skills are developed throughout each topic in systematically presented features that begin each topic and lesson, and practice and assessment problems. The Problem-Based Interactive Learning Problems that begin the lessons provide real problems that elicit evaluation, analysis, reasoning, and communication with peers and teachers to decipher and resolve the problem. Before the problem solving section of the lesson, the Visual Learning Bridge teaches visual literacy which supports the development of higher order thinking skills by making abstract representations easier to process and sequence. This visual support assists students' ability to synthesize the problem-solving sequence. In the practice and problem solving sections of the lesson, a variety of problem-solving exercises utilize higher order thinking skills, including the problems labeled: Reason, Critique Reasoning, Construct Arguments, Use Structure, and Write to Explain. These problems often connect mathematical concepts to real-world concepts and encourage students to gain deeper connections to mathematical concepts. Each topic includes lessons labeled Problem Solving that focuses on a skill students need to solve problems like judging reasonableness or analyzing patterns. These lessons help to build higher order thinking skills students can use to successfully problem solve. In addition, Differentiated Instruction and other features located in the TE include problems that supply additional rigor for advanced students.

E. Opportunities to engage in higher order thinking are systematically presented throughout each topic and lesson. View representative examples in Topic 9:

Problem Solving: Draw a Picture and Write an Equation, p. 218A-219B: These problem-solving lessons are found in every topic and teach mathematical thinking skills that assist in solving a range of problems.

Problem-Based Interactive Learning, pp. 206B, 208B: In a cooperative learning exercise, students use evaluation and analysis to solve a real problem.

Differentiated Instruction and Extend, pp. 209B, 211B, 213B: Students working above level are frequently provided with activities that extend the concept using higher order thinking skills.

Problems that require higher order thinking: Reason, pp. 217, 219; Writing to Explain, pp. 211, 213; Use Structure, pp. 209, 212

IVB. Content Stem

YES NO Coverage and Specificity of Example Content Topics

☑️ ☐ A. Do examples cover a wide range of topics typically found in state and local academic content standards?

☑️ ☐ B. Are example topics accessible to English language learners of the targeted level(s) of English language proficiency?

☑️ ☐ C. Are example topics systematically presented throughout the materials?

Justification: In the box below provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

A. enVisionMATH Common Core is directly aligned with the Common Core State Standards (CCSS) and uses the same structure as the Standards for Mathematical Content. By using the same structure, enVisionMATH Common Core is able to cultivate both the procedures and the understanding called for in the Common Core Standards. Grade level programs are organized into topics which correlate directly to the critical areas, domains, and content clusters of the CCSS. Topics and lessons are clearly connected and labeled to the Common Core Standards for instructor reference. For example, at the beginning of each lesson the domain, cluster, standard, and mathematics practices are listed (See examples in Topic 12 on pages 290A and 292A). Within each topic, sequenced lessons develop the topic in depth. The program pace is designed for students to complete one lesson per day, finishing 120 lessons per year and addressing all the standards (See the pacing guide on p. 14 of the Teacher's Program Overview). Topics include STEM (Science, Technology, Engineering, and Mathematics) content that promotes real-life problem solving to encourage students to choose careers in STEM related fields. These problems are labeled throughout the lessons with a green STEM icon. Connections to social studies, science, and culture are located in each topic-see page 5 of this correlation for more information. In addition, as advised by the National Mathematics Advisory Panel students develop algebraic thinking skills in all grade levels: kindergarten through 6th grade. Skills like using patterns to make generalizations and using mathematical symbols to describe relationships are targeted in the lower grades, and the higher grade programs include content like equations and expressions (See example in Topic 12 page 319). View grade 4 contents on pages 14-23 of the Teacher's Program Overview.

B. Topics are accessible to all targeted levels of proficiency through the careful planning and presentation of content and embedded instructional supports throughout the curriculum. For example, background for every topic and lesson is built into the TE to provide teachers with the content necessary to help students make connections among related subject areas. Visual and interactive supports like graphic organizers and peer learning are found in every lesson. Differentiated instruction for a range of learners is presented in each topic and also within the lessons to meet individual needs.

C. enVisionMATH Common Core presents 11-19 topics per grade. Each topic includes approximately 5-12 lessons that practice the topic and concepts in depth. To view the topics and content presented in each grade, view the Content Plan and Scope and Sequence on pages 38-57 of the Teacher's Program Overview. See correlations to the common core in the Teacher's Program Overview on pages 28-37 or at www.pearsonschool.com.
WIDA Protocol for Review of Instructional Materials for ELLs
WIDA PRIME Correlation Form for Educators

YES NO Accessibility to Grade Level Content
☑ ☐ D. Is linguistically and developmentally appropriate grade level content present in the materials?

☑ ☐ E. Is grade level content accessible for the targeted levels of language proficiency?

☑ ☐ F. Is the grade level content systematically presented throughout the materials?

Justification: In the box below provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

D. enVisionMATH Common Core provides programs for Kindergarten through 6th grade and is structured around the Common Core Standards for Mathematical Content. This structure ensures that every student is learning grade-level appropriate content that covers all the standards in the lessons taught throughout the school year. Lesson objectives, essential understandings, and connections to the Common Core are listed clearly at the beginning of each topic and lesson. Within the topics, lessons include problems that connect to language arts, social studies, and science content. Background for every topic and lesson is built into the TE to provide teachers with the content necessary to help students make connections among related subject areas. The TE introductory section, The Language of Math, focuses on linguistic comprehension and includes lessons that practice vocabulary, reading comprehension, and written and oral language in math. In addition, the K-2 programs integrate nonfiction math content readers. The readers are cross-cultural and cross-curricular resources that interweave math skills and concepts with facts about the history, environment, and culture of specific countries. They also present the math topics with applications in the real-world. The inclusion of the stories is intended to engage students and make the concepts more accessible.

E. The enVisionMATH Common Core program provides access to all content through embedded differentiated instruction and appropriate scaffolding in each lesson. Differentiated instruction and leveled homework is included in each school day, giving a chance for remediation or extension to all learners. Assessments are integrated into the materials at key points, and intervention and extension lessons accompany each assessment. For example, after completing all lessons in a topic students complete the topic test. The assessment includes alternative tests for different proficiency levels, item analysis and diagnosis, rubrics that provide page specific reteaching opportunities, and intervention lessons. See examples in Topic 12 on pages 324-325.

F. Grade level content is presented systematically throughout the program. As stated in section C, each topic includes approximately 5-12 lessons that practice the topic and concepts in depth. To view the topics and content presented in grade 4, view pages 14-23 of the Teacher's Program Overview. View example content in Topic 14:
Topic 14 Contents: Located in the first page of the topic, view the planning pages, lessons, and assessments presented for the topic. Each topic is presented in the same manner.
Quick and Easy Lesson Overview, pp. 366A, 368A, 370A: Objectives and essential understandings are listed at the beginning of each lesson to introduce content.
Math Background, pp. 363A, 363B, 366A: This feature provides background and activities that extend student understanding of the big ideas and essential understandings of the lesson.
IVC. INSTRUCTIONAL SUPPORTS

YES NO Sensory Support

A. Are sensory supports, which may include visual supports, present and varied in the materials?

B. Are sensory supports relevant to concept attainment and presented in a manner that reinforces communicative goals for the targeted levels of proficiency?

C. Are sensory supports systematically presented throughout the materials?

Justification: In the box below provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

A. The enVisionMATH Common Core program is strongly supported with a range of visual and multisensory supports that establish background knowledge, reinforce the understanding of lessons, and guide the practice and application of skills. Examples of visual supports used throughout the texts include illustrations, graphics, modeling, diagrams, and animations that make the lesson content easier to understand. Additionally, enVisionMATH Common Core uses a visual learning approach that makes learning the sequence of problem solving easier to understand for learners of all levels. Sensory supports are incorporated into every lesson and include interactive cooperative learning, discussion, the use of manipulatives (like dice), games, or drawing. Within the lesson, the sections that most utilize sensory supports are in the introductory features Problem-Based Interactive Learning and Differentiated Instruction. In both features, students work with their peers to solve problems or practice lesson content. Problem-Based Interactive Learning promotes whole class and small group discussion with guiding questions provided for teachers in the TE. In Differentiated Instruction at the beginning of the topic and within the lesson, students in all levels work in groups in a range of sensory oriented exercises like games and puzzles. The program also includes additional sensory rich resources like digital learning tools, hands-on materials, and more. Please see pages 72-75 in the Teacher's Program Overview for information about the program components.

B. Sensory supports used within enVisionMATH are used to deepen concept attainment, assist in problem solving, and reinforce communicative goals for the targeted proficiency levels. The use of sensory supports is located throughout the lesson and especially within the Differentiated Instruction section of the lesson to assist understanding, practice, and enhance content.

C. Sensory supports are systematically presented throughout the topic, lessons, and assessments. Please view the representative examples in Topic 15:
 Differentiated Instruction, pp. 399C, 399D: After assessing students' prior knowledge of the topic, these differentiated activities introduce the lessons and use a range of sensory supports like discussion, group-work, and graphics.
 Topic Opener, pp. 399E, 399: A background knowledge and introduction to the topic provides real-world visuals that connect to unit lessons and link to the Essential Questions. These questions are revisited in discussions throughout the topic.
 Problem-Based Interactive Learning, pp. 402B, 404B: This group activity begins each lesson.
 Differentiated Instruction (Lesson Level), pp. 403B, 405B: All activities are multisensory and include visuals, manipulatives, and cooperative learning.
YES NO Graphic Support

D. Are graphic supports present and varied in the materials?

✔️ ❑ D. enVisionMATH Common Core utilizes an extensive range of graphic supports throughout each topic and lesson. The program curriculum was developed using a visual learning approach that utilizes pictures with a purpose, information organized into chunks, graphic organizers, visual models, and a graphic design that shows the hierarchy of information on the page. Between the Problem-Based Interactive Learning activity and the practice exercises is a bar diagram feature called the Visual Learning Bridge. This is a pictorial step-by-step sequence of the problem solving process that helps students to focus on one concept at a time. Animations of the Visual Learning Bridge can be found online or on CD to deepen understanding. Throughout the lessons, concepts are developed visually with illustrations, diagrams, graphs, and charts. Students are taught to use graphic organizers as a tool to represent and organize information in many lessons. In addition, the nonfiction readers used in the grades K-2 programs are visually dense and use appealing pictures to tell the story.

E. Are graphic supports relevant to concept attainment and presented in a manner that reinforces communicative goals for the targeted proficiency levels?

✔️ ❑ E. Visual supports directly reinforce the activity in which they are presented and assist comprehension for all proficiency levels. The supports mentioned in part D help provide pathways to making abstract mathematical concepts and difficult information within problems easier to use and understand. Differentiated Instruction incorporates additional graphic supports for students needing intervention, additional practice for on-level students, and extension lessons for advanced students.

F. Are graphic supports systematically presented throughout the materials?

✔️ ❑ F. Graphic supports are presented systematically throughout the topics and lessons. See the representative examples of the types of graphic supports and the systematic presentation of graphic supports within enVisionMATH Topic 15:

 - Develop the Concept: Visual (Visual Learning Bridge), pp. 402, 403, 404, 405, 406, 407
 - View a range of representative graphics used throughout instruction: Photographs, p. 399, 400; Illustrations, p. 401, 406B, 406; Diagrams, p. 404B, 404, 405; Line plots, p. 399B, 408, 409; Maps, p. 402, 403; Charts, pp. 401, 408B

Justification: In the box below provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.
G. Are interactive supports present and varied in the materials?

H. Are interactive supports present and relevant to concept attainment for the targeted proficiency levels?

I. Are interactive supports varied and systematically presented in the materials?

Justification: In the box below provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

G. The enVisionMATH Common Core program is highly interactive and engages students as it teaches standards-based math concepts. Topics and lessons are introduced with background information that connects concepts to the world through evaluation and discussion. These features include Topic Opener and Math Background and often include off-shoot projects that include research. The lesson introductory feature, Problem-Based Interactive Learning, gives opportunity for students to connect to prior knowledge while interacting with students and teachers and solve real-world problems. In these problems, students interact in whole-class discussions and then work cooperatively in a small group to find solutions. The Differentiated Instruction activities are also interactive, using manipulatives and group work to complete activities like playing games, solving problems, and completing puzzles. Differentiated Instruction features are center activities and are completed in groups of similar level learners. In addition, enVisionMATH is available as an interactive digital program. These resources include electronic student editions, visual learning animations, eTools electronic manipulatives, animated glossary, practice worksheets, interactive math stories (K-2), remediation and enrichment activities, animated math songs (K-2), and math games. Interactive materials are also available to give students hands-on learning and include: Ready made centers for instructions; classroom manipulatives kit; individual student manipulatives kit; teacher's overhead manipulatives; and teacher's magnetic manipulatives (K-2).

H. enVisionMATH Common Core interactive supports are used to reinforce student comprehension of topic and lesson content. All targeted proficiency levels benefit from the extra engagement that results in the interactive learning supports found throughout the topic. Specific ELL, special needs, below-level, on target, and advanced/gifted activities are found before the lessons in the TE as well as structured into the lessons. All of these activities utilize a range of sensory, graphic, and interactive supports.

I. enVisionMATH presents interactive supports systematically throughout the topics. Please see representative examples in Topic 16:

Vocabulary, pp. 419D, 419: Vocabulary instruction includes the use of supports like flashcards and games.

Differentiated Instruction, pp. 423B, 425B, 427B: These center activities are structured into all lessons and are designed to be interactive.

Interactive Learning and Problem-Based Interactive Learning pp. 420, 421, 424B, 426B: Interactive concept development where students interact with teachers and other students to solve problems.
Appendix

I. **Performance Definitions** – the criteria (linguistic complexity, vocabulary usage, and language control) that shape each of the six levels of English language proficiency that frame the English language proficiency standards.

 IA. Linguistic Complexity – the amount and quality of speech or writing for a given situation
 IB. Vocabulary Usage – the specificity of words (from general to technical) or phrases for a given context
 IC. Language Control/Conventions – the comprehensibility and understandability of the communication for a given context

II. **English Language Proficiency Standards** – the language expectations of English language learners at the end of their English language acquisition journey across the language domains, the four main subdivisions of language.

 IIA. Five WIDA ELP Standards:
 1. English language learners communicate for Social and Instructional purposes within the school setting.
 2. English language learners communicate information, ideas, and concepts necessary for academic success in the content area of Language Arts.
 3. English language learners communicate information, ideas, and concepts necessary for academic success in the content area of Mathematics.
 4. English language learners communicate information, ideas, and concepts necessary for academic success in the content area of Science.
 5. English language learners communicate information, ideas, and concepts necessary for academic success in the content area of Social Studies.

 IIIB. Domains:
 - **Listening** – process, understand, interpret, and evaluate spoken language in a variety of situations
 - **Speaking** – engage in oral communication in a variety of situations for a variety of audiences
 - **Reading** – process, understand, interpret, and evaluate written language, symbols and text with understanding and fluency
 - **Writing** – engage in written communication in a variety of situations for a variety of audiences

III. **Levels of English Language Proficiency** - The five language proficiency levels (1-Entering, 2-Beginning, 3-Developing, 4-Expanding, 5- Bridging) outline the progression of language development in the acquisition of English. The organization of the standards into strands of Model Performance Indicators (MPIs) illustrates the continuum of language development.

 IIIA. Differentiation – providing instruction in a variety of ways to meet the educational needs of students at different proficiency levels
 IIIB. Scaffolding – building on already acquired skills and knowledge from level to level of language proficiency based on increased linguistic complexity, vocabulary usage, and language control through the use of supports.
IV. Strands of Model Performance Indicators – examples that describe a specific level of English language proficiency for a language domain. Each Model Performance Indicator has three elements: Language Function, Content Stem, and Support

IVA. Language Functions – the first of the three elements in model performance indicators indicates how ELLs are to process and use language to demonstrate their English language proficiency.
- Context – the extent to which language functions are presented comprehensively, socially and academically in materials
- Higher Order Thinking – cognitive processing that involves learning complex skills such as critical thinking and problem solving.

IVB. Content Stem – the second element relates the context or backdrop for language interaction within the classroom. The language focus for the content may be social, instructional or academic depending on the standard.

IVC. Instructional Support – instructional strategies or tools used to assist students in accessing content necessary for classroom understanding or communication and to help construct meaning from oral or written language. Three categories of instructional supports include sensory, graphic and interactive supports.
- Sensory support – A type of scaffold that facilitates students’ deeper understanding of language or access to meaning through the visual or other senses.
- Graphic support – A type of scaffold to help students demonstrate their understanding of ideas and concepts without having to depend on or produce complex and sustained discourse.
- Interactive support – A type of scaffold to help students communicate and facilitate their access to content, such as working in pairs or groups to confirm prior knowledge, using their native language to clarify, or incorporating technology into classroom activities.