PRIME V2™
Protocol for Review of Instructional Materials for ELLs V2

WIDA PRIME V2 INVENTORY

WiDA™
Introduction to PRIME

WIDA developed PRIME as a tool to assist publishers and educators in analyzing their materials for the presence of key components of the WIDA Standards Framework. PRIME stands for Protocol for Review of Instructional Materials for ELLs.

The PRIME correlation process identifies how the components of the 2012 Amplification of the English Language Development Standards, Kindergarten through Grade 12, and the Spanish Language Development (SLD) Standards, Kindergarten through Grade 12 are represented in instructional materials. These materials may include core and supplemental texts, websites and software (e.g., apps, computer programs), and other ancillary materials. PRIME is not an evaluative tool that judges the effectiveness of published materials.

Those who complete WIDA PRIME Correlator Trainings receive PRIME Correlator Certification. This may be renewed annually. Contact WCEPS for pricing details at store@wceps.org or 877-272-5593.

New in This Edition

PRIME has been expanded to include
- Correlation to the WIDA Standards Framework
- Connections to English and Spanish Language Development Standards
- Relevance for both U.S. domestic and international audiences

Primary Purposes

- To assist educators in making informed decisions about selecting instructional materials for language education programs
- To inform publishers and correlators on the various components of the WIDA Standards Framework and of their applicability to the development of instructional materials

Primary Audience

- Publishers and correlators responsible for ensuring their instructional materials address language development as defined by the WIDA English and Spanish Language Development Standards
- District administrators, instructional coaches, and teacher educators responsible for selecting instructional materials inclusive of or targeted to language learners

At WIDA, we have a unique perspective on how to conceptualize and use language development standards. We welcome the opportunity to work with both publishers and educators. We hope that in using this inventory, publishers and educators will gain a keener insight into the facets involved in the language development of language learners, both in the U.S. and internationally, as they pertain to products.
Overview of the PRIME Process

PRIME has two parts. In Part 1, you complete an inventory of the materials being reviewed, including information about the publisher, the materials’ intended purpose, and the intended audience.

In Part 2, you answer a series of yes/no questions about the presence of the criteria in the materials. You also provide justification to support your “yes” responses. If additional explanations for “No” answers are relevant to readers’ understanding of the materials, you may also include that in your justification. Part 2 is divided into four steps which correspond to each of the four elements being inventoried; see the following table.

PRIME at a Glance

<table>
<thead>
<tr>
<th>Standards Framework Elements Included in the PRIME Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Asset-based Philosophy</td>
</tr>
<tr>
<td>A. Representation of Student Assets and Contributions</td>
</tr>
<tr>
<td>2. Academic Language</td>
</tr>
<tr>
<td>A. Discourse Dimension</td>
</tr>
<tr>
<td>B. Sentence Dimension</td>
</tr>
<tr>
<td>C. Word/Phrase Dimension</td>
</tr>
<tr>
<td>3. Performance Definitions</td>
</tr>
<tr>
<td>A. Representations of Levels of Language Proficiency</td>
</tr>
<tr>
<td>B. Representations of Language Domains</td>
</tr>
<tr>
<td>4. Strands of Model Performance Indicators and the Standards Matrices</td>
</tr>
<tr>
<td>A. Connection to State Content Standards and WIDA Language Development Standards</td>
</tr>
<tr>
<td>B. Cognitive Challenge for All Learners at All Levels of Language Proficiency</td>
</tr>
<tr>
<td>C. Supports for Various Levels of Language Proficiency</td>
</tr>
<tr>
<td>D. Accessibility to Grade Level Content</td>
</tr>
<tr>
<td>E. Strands of Model Performance Indicators</td>
</tr>
</tbody>
</table>
PRIME Part 1: Provide Information about Materials

Provide information about each title being correlated.

Publication Title(s): **Ready Mathematics, 2020 Edition Grades 6-8**

Publisher: **Curriculum Associates**

Materials/Program to be Reviewed: **Teacher Resource Book and Math Student Book**

Tools of Instruction included in this review: **Examples from Grade 7**

Intended Teacher Audiences: **Curriculum Advisors, Classroom Teachers, Content Specialists, Language Teachers, Resource Teachers, and Paraprofessionals**

Intended Student Audiences: **Students in Grades 6, 7, & 8**

Language domains addressed in material: **Listening, Speaking, Reading, and Writing**

Check which set of standards will be used in this correlation:

- □ WIDA Spanish Language Development Standards
- ☒ WIDA English Language Proficiency Standards

WIDA Language Development Standards addressed: (e.g. Language of Mathematics): **Social and Instructional Language, The Language of Mathematics**

WIDA Language Proficiency Levels included: **Ready Mathematics uses levels similar to WIDA’s Language Proficiency Levels, which are referenced in the program’s differentiated instruction. Program levels include: Levels 1-3, Levels 2-4, and Levels 4-5.**

Most Recently Published Edition or Website: **curriculumassociates.com**

In the space below explain the focus or intended use of the materials:

Ready Mathematics prepares students for mastery of today’s rigorous standards through a balance of conceptual understanding, procedural skills, fluency, and application. Ready’s clear, thoughtful pedagogy, and research-based instructional model, supports a rich classroom environment in which mathematical reasoning, mathematical discourse, and a range of mathematical practices thrive.
PRIME Part 2: Correlate Your Materials

1. Asset-Based Philosophy

A. Representation of Student Assets and Contributions
The WIDA Standards Framework is grounded in an asset-based view of students and the resources and experiences they bring to the classroom, which is the basis for WIDA’s Can Do Philosophy.

1) Are the student assets and contributions considered in the materials?
 Yes No

2) Are the student assets and contributions systematically considered throughout the materials?
 Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) Student assets and contributions are considered in the materials. The Introduction section of each lesson, “activates prior knowledge, connecting what students already know with the new skills and concepts they will be learning in the lesson” (Grade 7 Teacher Resource Book, page A19). Additionally, the students are introduced to “The 8 Math Habits” which encourages them to use what they think and know about any given problem to discuss with a partner. An example of this can be seen here, in Math Habit 4 from the Grade 7 Student Book:
2) Student assets and contributions are considered systematically throughout the materials. Students have multiple opportunities throughout each lesson to interact with their peers and share what they know or think about the problems. The students also have a “self-check” at the beginning of each unit. This allows them to consider each skill that will be addressed in the unit and gives them an opportunity to decide, through a checklist, if it is something they already know about. The program also makes real-world connections prior to launching a new unit, as seen below, from Unit 1, Grade 7:
2. Academic Language

WIDA believes that developing language entails much more than learning words. WIDA organizes academic language into three dimensions: discourse, sentence, and word/phrase dimensions situated in sociocultural contexts. Instructional material developers are encouraged to think of how the design of the materials can reflect academic language as multi-dimensional.

A. Discourse Dimension (e.g., amount, structure, density, organization, cohesion, variety of speech/written text)

1) Do the materials address language features at the discourse dimension in a consistent manner for all identified proficiency levels?

 ✔ Yes ☐ No

2) Are the language features at the discourse dimension

 ✔ Yes ☐ No
addressed systematically throughout the materials?

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) Ready Mathematics consistently includes language features at the discourse level for all identified proficiency levels. The lessons all have language objectives plus a “pair/share” feature which allows the students to discuss with a partner their approaches, solutions, and justifications of the problems. Because each lesson is designed to take approximately one week, the students have multiple extended opportunities to engage in discourse throughout the lesson. An example of the pair/share strategy is seen here:

Language differentiation strategies found in the Teacher Resource Book are organized by WIDA levels and include multiple strategies to support learners as needed. An example from Lesson 14 is below:
2) Language features at the discourse dimension are presented systematically throughout the materials. Lessons begin with a discussion and/or a writing activity where the students use discourse to show what they already know about the upcoming topic. See an example below:
Throughout the lessons, students discuss and process content through reading, writing, peer, small and large group activities. Examples are seen below:

Use What You Know

You learned that fractions can be written as decimals. Take a look at this problem.

Jenna figured out the cost of different fruits per piece, and wrote the unit costs as fractions. She wants to write each unit cost as a decimal to show the cost in cents. How can she write these common fractions as decimals?

<table>
<thead>
<tr>
<th>Fruit</th>
<th>Cost Per Piece in Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>strawberry</td>
<td>(\frac{1}{10})</td>
</tr>
<tr>
<td>kiwi</td>
<td>(\frac{1}{5})</td>
</tr>
<tr>
<td>apple</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>banana</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>mango</td>
<td>(\frac{3}{4})</td>
</tr>
</tbody>
</table>

Use the math you already know to solve the problem.

a. Write each fraction as an equivalent fraction with a denominator of 10 or 100.

<table>
<thead>
<tr>
<th>Unit Fraction</th>
<th>Equivalent Fraction</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{10})</td>
<td>(\frac{1}{10})</td>
<td>(0.1)</td>
</tr>
<tr>
<td>(\frac{1}{5})</td>
<td>(\frac{2}{10})</td>
<td>(0.2)</td>
</tr>
<tr>
<td>(\frac{1}{4})</td>
<td>(\frac{2.5}{10})</td>
<td>(0.25)</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>(\frac{5}{10})</td>
<td>(0.5)</td>
</tr>
<tr>
<td>(\frac{3}{4})</td>
<td>(\frac{7.5}{10})</td>
<td>(0.75)</td>
</tr>
</tbody>
</table>

b. What about the denominators of the fractions made it convenient to use equivalent fractions as a step in writing them as decimals?

Subtracting positive and negative fractions and decimals is also similar to subtracting integers.

How can you subtract \(\frac{3}{8} - \frac{5}{8} \)?

First rewrite the subtraction problem as an addition problem using the additive inverse.

\[
\frac{3}{8} - \frac{5}{8} = \frac{3}{8} + \left(-\frac{5}{8} \right)
\]

You can use a number line to show the problem.

\[
\begin{align*}
\frac{3}{8} - \frac{5}{8} &= \frac{3 + (-5)}{8} \\
&= \frac{-2}{8}
\end{align*}
\]

Reflect

1. How is adding positive and negative fractions similar to adding integers? How is it different?
B. Sentence Dimension (e.g., types, variety of grammatical structures, formulaic and idiomatic expressions; conventions)

1) Do the materials address language features at the sentence dimension for all of the identified proficiency levels?
 Yes No

2) Are the language features at the sentence dimension appropriate for the identified proficiency levels?
 Yes No

3) Are the language features at the sentence dimension addressed systematically throughout the materials?
 Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) The materials address language features at the sentence dimension for all of the identified proficiency levels. The Teacher Resource Guide provides differentiated instruction and support for students who are on-level, or need intervention or a challenge.
Many times, language learners will be provided with sentence frames, graphic organizers and the like, depending on their proficiency level, to help support understanding. See an example below from Unit 4:

<table>
<thead>
<tr>
<th>ELP Levels 1–3</th>
<th>ELP Levels 2–4</th>
<th>ELP Levels 4–5</th>
</tr>
</thead>
</table>
| **Speaking/Writing** | **Reading** as a strategy. Discuss each problem with the group. Allow students to answer with single-word responses or simple phrases. Use **Revoicing** to clarify and extend responses. Have students use these frames to support responses to problems 2, 3, and 6:
- I know that $\angle CDE$ and $\angle EDF$ are supplementary because they form a straight line.
- I know that the measures of $\angle CDE$ and $\angle EDF$ equal 180° because they are supplementary angles.
- I know $\angle ADC$ is 55° because it is a vertical angle to $\angle EDF$ and **vertical angles are congruent**. | **Reading** as a class. Have partners complete the following if-then frames:
- If $\angle CDE$ and $\angle EDF$ **form a straight line**, then they are supplementary angles.
- If $\angle CDE$ and $\angle EDF$ are supplementary angles, then their measures must add to 180°.
- If $\angle ADC$ and $\angle EDF$ are vertical angles, then they are congruent.
Point out the if clause in a sentence frame. Explain that when the if clause tells something known to be true, the word if means because. Challenge partners to write two if-then statements about problem 5. | **Reading** as a class. Have students discuss each problem and compose if-then statements about problems 2 and 3. Provide the following sentence frame:
- If $\angle CDE$ and $\angle EDF$ **are supplementary**, then **are supplementary angles**.
Point out the if clause. Explain that when the if clause tells something known to be true, the word if means because.
For problem 6, have students work individually to write their own if-then statement. Then, have students share their if statement with their partner and see if their partner can complete the then statement. Ask students to compare their statements. If the statements are the same, challenge them to write a different statement. |

2) Language features at the sentence dimension are appropriate for the identified proficiency levels. Language instruction includes scaffolds like language frames, modeling, guided questioning, cooperative learning, and specific differentiated instruction. See a few examples here:

English Language Learners

Write the word extended on the board. Draw a line segment with endpoints A and B.
Ask students to watch as you extend the line segment past endpoint B. Say: I have extended line segment AB.
Draw another line segment. Have a volunteer extend segment and use the language shown above.
3) Language features at the sentence dimension are systematically presented throughout the Ready Mathematics materials. Each lesson contains a pacing guide which follows the same format: Introduction, Guided Instruction, Guided Practice, and Independent Practice. Other lessons, which focus more quickly on the math skills being covered, include a Modeled and Guided Instruction section. Embedded in each of these areas are multiple activities and other instructional materials at the sentence dimension. See an example of both from pacing guides below:
C. Word/Phrase Dimension (multiple meanings of words, general, specific, and technical language)

1) Do the materials address language features at the word/phrase dimension in a consistent manner for all identified proficiency levels?

 Yes No

2) Are words, expressions, and phrases represented in context?

 Yes No

3) Is the general, specific, and technical language appropriate for the targeted proficiency levels?

 Yes No
4) Is the general, specific, and technical language systematically presented throughout the materials? **Yes** **No**

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) The Ready Mathematics materials address language features at the word/phrase dimension in a consistent manner for all identified proficiency levels. Each lesson begins with an overview any new vocabulary that will be introduced and/or vocabulary to be reviewed from a previous lessons. See an example here from Lesson 5:

![Lesson Vocabulary](image)

Additionally, the ELP Chart provided in the lessons often provides an overview of any key math terms as well as other ideas about incorporating academic vocabulary into instruction. See an example here:

2General language refers to words or expressions not typically associated with a specific content areas (e.g., describe a book).
Specific language refers to words or expressions used across multiple academic content areas in school (chart, total, individual).
Technical language refers to the most precise words or expressions associated with topics within academic content areas in school and is reflective of age and developmental milestones.
2) The words, expressions, and phrases used in the Ready Mathematics materials are presented in context. As mentioned above, the lessons will begin with an overview of any new vocabulary that will be introduced and/or a review of previously learned vocabulary. The lesson then will utilize the vocabulary in context. Additionally, the Units begin with a “Build Your Vocabulary” section which allows the students to spend time with key vocabulary they will see in the subsequent lessons. An example of this is seen here:

Students then see these words in context throughout the unit. Following the example above, the students will begin with Leeson 1 which is called “Adding Positive and Negative Integers.”
3) General, specific, and technical language is appropriate for the targeted proficiency levels in the Ready Mathematics program. The Teacher Resource Book uses the English Language Development section to differentiate the language appropriate for the different proficiency levels. See an example here:

4) General, specific, and technical language are presented in a consistent and systematic manner throughout the program. Specific and technical language is presented in all sections of the math lessons. General language is practiced throughout the lessons as well in peer, group, and whole class discussions and cooperative activities that practice language and new content. An example of all three types of language being used in a lesson is seen here:
3. Performance Definitions

The WIDA Performance Definitions define the WIDA levels of language proficiency in terms of the three dimensions of academic language described above (discourse, sentence, word/phrase) and across six levels of language development.

A. Representation of Levels of Language Proficiency

1) Do the materials differentiate between the language proficiency levels?
 Yes No

2) Is differentiation of language proficiency developmentally and linguistically appropriate for the designated language levels?
 Yes No

3) Is differentiation of language systematically addressed throughout the materials?
 Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) Ready Mathematics uses levels similar to WIDA’s English Language Proficiency Levels, which are referenced in the program’s English Language Development section. The levels are broken down as follows: ELP Levels 1-3, ELP Levels 2-4, and ELP Levels 4-5. Each of the lessons contain a differentiated instruction chart which, according to the Teacher Resource Book, page A24, “provide strategic scaffolds across the levels of English language proficiency.” An example of the chart is seen here:
Differentiation is linguistically appropriate for students working above and below grade level. The program is careful to distinguish that it scaffolds "the language, not the mathematics, so that ELLs can meet the demands of the same grade-level standards as their English-speaking peers" (Teacher Resource Book, page A31). The English Language Development section, shown above, differentiates language appropriately to meet the needs of all language learners.

Differentiation of language is systematically addressed throughout the materials. Each lesson contains one or more of the above mentioned differentiation instruction charts. The differentiation strategies maintains the rigor of the content while changing the supports and scaffolds at the different language levels to meet the needs of all students. An example here, from Unit 1, Lesson 2, demonstrates how the program differentiates for language while teaching the concept of nonnegative numbers:
Students are given sentence frames and number lines as supports for levels 1-3, are paired up to discuss in levels 2-4 and are expected to use different types of discourse to discuss with a partner at levels 4-5.

B. Representation of Language Domains

WIDA defines language through expressive (speaking and writing) and receptive (reading and listening) domains situated in various sociocultural contexts.

1) Are the language domains (listening, speaking, reading, and writing) targeted in the materials? Yes No

2) Are the targeted language domains presented within the context of language proficiency levels? Yes No

3) Are the targeted language domains systematically integrated throughout the materials? Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) All four language domains are targeted in the Ready Mathematics materials. Each lesson contains multiple opportunities for students to listen, speak, read, and write. The example below demonstrates how all four domains are used in the Introduction section of Lesson 5. Students begin by listening to the teacher as a problem is presented. The students will then read the problems in their book, write the answers and discuss/compare strategies with a partner and then as a whole class:
The lessons all contain activities that incorporate all the language domains.

2) Language domain activities are supported with instructional scaffolds and differentiated instruction to make content accessible for all targeted proficiency levels. The Differentiated Instruction Charts found in the Teacher Resource Book for each lesson outline specific scaffolds and supports for activities at each of the identified proficiency levels. Additionally, the charts indicate which domain(s) the activities are intended to address. See an example here of Speaking and Writing:

3) The targeted language domains are systematically integrated throughout the Ready Mathematics materials. All four language domains (Listening, Speaking, Reading, and
Writing) are included in each lesson through a variety of activities, guided practice, individual practice, and group/pair work. The structure of each lesson, shown below, provides opportunities for students to engage with all of the domains:

<table>
<thead>
<tr>
<th>Part of the Lesson</th>
<th>Teacher Actions</th>
<th>Student Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>• Allows student think time</td>
<td>• Perseveres in thinking about problems and questions</td>
</tr>
<tr>
<td>Activates prior knowledge, connecting what students already know with the new skills and concepts they will be learning in the lesson.</td>
<td>• Supports effective partner communication</td>
<td>• Solves problems independently using methods or approaches that make sense</td>
</tr>
<tr>
<td></td>
<td>• Facilitates whole class discourse of student discussions</td>
<td>• Articulates and explains solution strategy and reasoning</td>
</tr>
<tr>
<td></td>
<td>• Guides students to connect multiple strategies</td>
<td>• Actively listens to partners and whole class conversations</td>
</tr>
<tr>
<td></td>
<td>• Encourages effort</td>
<td>• Participates in small group and whole class conversations, politely critiquing the reasoning of others</td>
</tr>
<tr>
<td></td>
<td>• Recognizes mistakes as opportunities for learning</td>
<td>• Solves problems using multiple strategies or mathematical tools</td>
</tr>
<tr>
<td>Modeled and Guided Instruction</td>
<td></td>
<td>• Recognizes mistakes as opportunities to learn</td>
</tr>
<tr>
<td>Explores ways to solve problems using multiple representations and prompts students to reason and explain their thinking.</td>
<td></td>
<td>• Applies learning to new problems</td>
</tr>
<tr>
<td>Guided Practice</td>
<td>• Observes student strategies</td>
<td></td>
</tr>
<tr>
<td>Models self-questioning and mathematical habits of mind as students solve problems and discuss their solution strategies.</td>
<td>• Asks questions to guide or correct understanding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Differentiates instruction as needed in stations or small groups</td>
<td></td>
</tr>
<tr>
<td>Independent Practice</td>
<td>• Encourages students to solve problems in more than one way</td>
<td></td>
</tr>
</tbody>
</table>
4. The Strands of Model Performance Indicators and the Standards Matrices

The Strands of Model Performance Indicators (MPIs) provide sample representations of how language is processed or produced within particular disciplines and learning contexts. WIDA has five language development standards representing language in the following areas: Social and Instructional Language, The Language of Language Arts, The Language of Mathematics, The Language of Science, The Language of Social Studies as well as complementary strands including The Language of Music and Performing Arts, The Language of Humanities, The Language of Visual Arts.

The Standards Matrices are organized by standard, grade level, and domain (Listening, Speaking, Reading, and Writing). The standards matrices make an explicit connection to state academic content standards and include an example for language use. Each MPI includes a uniform cognitive function (adopted from Bloom’s taxonomy) which represents how educators can maintain the cognitive demand of an activity while differentiating for language. Each MPI provides examples of what students can reasonably be expected to do with language using various supports.

A. Connection to State Content Standards and WIDA Language Development Standards

1) Do the materials connect the language development standards to the state academic content standards? Yes No

2) Are the academic content standards systematically represented throughout the materials? Yes No

3) Are social and instructional language and one or more of the remaining WIDA Standards present in the materials? Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) The Ready Mathematics program is “Guided by the framework for English language proficiency by the Council of the Great City Schools and the Council of Chief State School Officers and the WIDA Standards” (Teacher Resource Book, page A30). This framework is embedded in the program’s emphasis in the Common Core Standards. Lessons connect the language standards to the content standards consistently throughout the program. Pages A22-23 of the Teacher Resource Book outlines how this occurs through research-
based language routines that were included in the lessons. Some of these routines include “Three Reads,” “In Your Own Words,” “Act It Out,” and “Turn and Talk.” An example of “Act It Out” is seen below, from Page 161 of the Teacher Resource Book:

Hands-On Activity

Act out the solution to an equation.

Materials: 14 books, 4 large Xs

Say: A teacher has 14 books. He gives 1 book each to 2 students. He divides the remaining books equally among 4 other students. How many books does each of the 4 students get?

Call 4 students to the front, giving each an X to hold. Call up 2 more students. Place 14 books next to them. Have the class suggest an equation that describes the situation. Write \(4x + 2 = 14\) on the board.

Have the students without Xs each take a book and sit down.

Have the class revise the equation to reflect the new situation.

Write \(4x = 12\) under the first equation. Have the remaining students divide the books equally to solve the problem. Write \(x = 3\).

Compare the acted out solution with the steps for solving an equation.

2) The academic content standards are systematically represented throughout the Ready Mathematics program. The Lesson Overviews all state clear Content Objectives. There is also a section entitled “CCSS Focus” which details the standard that will be addressed in the lesson, any additional standards that may be covered, and which Standards for Mathematical Practice (SMP) the students will be exposed to. An example from Lesson 15 is seen below:
The materials systematically integrate social and instructional language with the language of mathematics. Social and Instructional language is used in the practice and application of all skills taught in the lessons through cooperative dialogue and mathematical discourse. The example seen below, from Lesson 3, illustrates several examples of how the program integrates social and instructional language with the language of mathematics. There is also an example of the use of the language of Science:
B. Cognitive Challenge for All Learners at All Levels of Language Proficiency

1) Do materials present an opportunity for language learners to engage in various cognitive functions (higher order thinking skills from Bloom’s taxonomy) regardless of their language level?

Yes No
2) Are opportunities for engaging in higher order thinking systematically addressed in the materials?

Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) Opportunities for language learners at all proficiency levels to engage in various cognitive functions are found throughout the Ready Mathematics program. The program uses a combination of the hierarchies of learning from Webb’s Depth of Knowledge (DOK) and Bloom’s taxonomy. The lessons all have both content and language objectives and the language objectives include the cognitive functions for the lesson. See an example below from Lesson 3, where students will, among other things, be explaining and justifying:

Language Objectives
- Read to understand everyday uses of positive and negative numbers.
- Explain models for adding integers using precise academic and mathematical language.
- Create generalizations about finding the sign of the sum of integers in speaking and writing.
- Justify answers by showing work and explaining solutions in complete sentences.
- Read and respond in writing to problems involving addition and subtraction of integers.

For language learners, the differentiated instruction charts allow the teacher to differentiate the language and cognitive functions for students depending on proficiency level. See an example form Lesson 3, where the students at levels 4-5 will justify their methods for solving a problem. But students at levels 1-3 will use sentence frames to help explain how they solved the problem:
2) Opportunities to engage in higher order thinking are systematically addressed throughout the materials. The introductory section of the Teacher Resource Book contains a chart outlining the DOK levels and Bloom’s cognitive functions, along with a description of the types of activities/behaviors students would be expected to do at these levels. An example of this chart is seen here:
The lessons also have a “Differentiated Instruction” section where there are ideas for modifying activities based on the student’s level. An example of a “Challenge Activity” is seen here, from Lesson 10, where students will be interpreting and explaining:

Challenge Activity

Develop and interpret a proportional relationship.

Materials: graph paper

Students will develop and interpret a proportional relationship from a point on a coordinate plane. Have students plot one point such as (3, 6) or (5, 2) on a coordinate plane. They should connect the origin and their point and extend the line to the edge of the paper. Have them identify several other points on the line and enter the coordinates in a table with rows labeled x and y.

Have students work individually to find the following:

- the ratio of x to y in simplest form for each point
- the constant of proportionality
- an equation that relates x and y
- a real-world situation that could be modeled by their data

Have students share their work in small groups. They should explain how the graph, the table, the equation, and the real-world situation are related.
C. Supports for Various Levels of Language Proficiency

1) Do the materials provide scaffolding supports for students to advance within a proficiency level?
 Yes No

2) Do the materials provide scaffolding supports for students to progress from one proficiency level to the next?
 Yes No

3) Are scaffolding supports presented systematically throughout the materials?
 Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) The Ready Mathematics materials provide scaffolding supports for students to advance within a proficiency level. The structure of each lesson provides language objectives, modeled and guided instruction, guided practice, then independent practice to support and then gradually release the responsibility to the students. Typical supports include self-checks, language frames for discussions and writing activities, visuals, graphic organizers, models, cooperative learning and hands-on learning. The Teacher Resource Book, page A24, describes the supports the program offers specifically so teachers can scaffold for English language learners:

![Supporting English Language Learners](image)
2) The materials provide scaffolding supports for students to progress from one proficiency level to the next. The English Language Development section suggests lesson specific scaffolds at each of the three proficiency level bands, easily allowing the students to progress through the proficiency levels.

3) Scaffolding supports are presented systematically throughout the materials. Below are some examples of various supports which are representative of those found throughout the materials:

The Units begin with a preview/self-check:

![Self Check](image)

Continuing to preview the Unit, the students work in pairs to build vocabulary:
Students also will see graphic organizers:

The lessons provide visual support:
D. Accessibility to Grade Level Content

1) Is linguistically and developmentally appropriate grade-level content present in the materials?
 Yes No

2) Is grade-level content accessible for the targeted levels of language proficiency?
 Yes No

3) Is the grade-level content systematically presented throughout the materials?
 Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) The Ready Mathematics program is organized by grade-level (6-8) and each lesson corresponds to one or more grade level Common Core State Standards (CCSS) for Math. All four language domains are practiced within each lesson. The Teacher Resource Book outlines what the CCSS focus is for the upcoming lesson, as well as a description called “Learning Progression,” which discusses what the students have learned in the previous grade, earlier in the grade they are currently in, and what they will be doing in the upcoming grade. See an example here, from Lesson 17:
Grade level content is accessible at all levels of language proficiency. The materials have an English Language Development section in the Teacher Resource Book that differentiates the language but maintains the same rigor and content for all levels. See an example here, from Lesson 17, where the students will be working with the concept of solution set:
3) Grade level content is presented systematically throughout the program. Before each unit is a comprehensive flow chart of the lessons the students have already been through and are building upon, then the lessons in the current unit, then the lessons the students are preparing for. Each cell of the flow chart lists the grade level, lesson number, lesson topic, and standard(s) for the lesson. See an example here:
E. Strands of Model Performance Indicators

1) Do materials include a range of language functions?
 Yes No

2) Are the language functions incorporated into a communicative goal or activity?
 Yes No

3) Do the language functions support the progression of language development?
 Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) The Ready Mathematics materials include a range of language functions throughout each lesson. Language functions like discuss, explain, predict, draw, paraphrase, label, compare, and summarize are used throughout the lesson and are modeled in language frames for academic discussions.

2) The language functions described above that are found in the program are incorporated
3) The language functions support the progression of language development throughout
the Ready Mathematics materials. Language functions are appropriate for the identified proficiency levels and build on each other as the students progress through the levels. In the English Language Development chart seen here, the students will progress from copying to paraphrasing to summarizing:

Prepare for Day 1: Use with Find Out More

<table>
<thead>
<tr>
<th>ELP Levels 1–3</th>
<th>ELP Levels 2–4</th>
<th>ELP Levels 4–5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading/Listening Have students create in their Math Journals a three-column table with the headings Term, Meaning, and Picture. Ask students to preview Find Out More by finding the bold words and copying them into the Term column. Read aloud Find Out More. Pause after each definition is read. Guide students to write the definition in the Meaning column and draw a sketch in the Picture column. Use the Act It Out routine to create gestures for terms such as tracing a large, invisible circle for circumference or holding both arms out wide to represent diameter. Compile ideas in a class graphic organizer. Ask students to identify formulas to add to a Formula Anchor Chart. Include (C = 2\pi r).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Reading/Listening** Have students create in their Math Journals a three-column table with the headings Term, Meaning, and Picture. Ask students to preview *Find Out More* by finding the bold words and copying them into the Term column. Pair students to read *Find Out More*. Have partners take turns reading and paraphrasing each paragraph using the In Your Own Words routine. If the paragraph contains a bold term, have them add the information to their graphic organizer. Support understanding of the relationship between the formulas \(C = \pi d \) and \(C = 2\pi r \) with this sentence frame:
 - The radius is one-half the diameter, so the diameter is twice as long as twice the radius. |
| **Reading/Listening** Have students preview *Find Out More*. Have partners use the Turn and Talk routine to discuss their predictions about what they will learn. Have students read the *Find Out More* independently. Remind them to underline, circle, highlight, or take notes in the margin to deepen comprehension. After reading, have partners work together to create a graphic organizer of their choice that summarizes important information. Possible graphic organizers include: table, diagram, web, etc. Post partners’ graphic organizers in the room and allow students to circulate to view one another’s work. |