PRIME V2™

Protocol for Review of Instructional Materials for ELLs V2

WIDA PRIME V2 CORRELATION

WiDA
Introduction to PRIME

WIDA developed PRIME as a tool to assist publishers and educators in analyzing their materials for the presence of key components of the WIDA Standards Framework. PRIME stands for Protocol for Review of Instructional Materials for ELLs.

The PRIME correlation process identifies how the components of the 2012 Amplification of the English Language Development Standards, Kindergarten through Grade 12, and the Spanish Language Development (SLD) Standards, Kindergarten through Grade 12 are represented in instructional materials. These materials may include core and supplemental texts, websites and software (e.g., apps, computer programs), and other ancillary materials. PRIME is not an evaluative tool that judges the effectiveness of published materials.

Those who complete WIDA PRIME Correlator Trainings receive PRIME Correlator Certification. This may be renewed annually. Contact WCEPS for pricing details at store@wceps.org or 877-272-5593.

New in This Edition

PRIME has been expanded to include
- Correlation to the WIDA Standards Framework
- Connections to English and Spanish Language Development Standards
- Relevance for both U.S. domestic and international audiences

Primary Purposes

- To assist educators in making informed decisions about selecting instructional materials for language education programs
- To inform publishers and correlators on the various components of the WIDA Standards Framework and of their applicability to the development of instructional materials

Primary Audience

- Publishers and correlators responsible for ensuring their instructional materials address language development as defined by the WIDA English and Spanish Language Development Standards
- District administrators, instructional coaches, and teacher educators responsible for selecting instructional materials inclusive of or targeted to language learners

At WIDA, we have a unique perspective on how to conceptualize and use language development standards. We welcome the opportunity to work with both publishers and educators. We hope that in using this inventory, publishers and educators will gain a keener insight into the facets involved in
the language development of language learners, both in the U.S. and internationally, as they pertain to products.

Overview of the PRIME Process

PRIME has two parts. In Part 1, you complete an inventory of the materials being reviewed, including information about the publisher, the materials’ intended purpose, and the intended audience.

In Part 2, you answer a series of yes/no questions about the presence of the criteria in the materials. You also provide justification to support your “yes” responses. If additional explanations for “No” answers are relevant to readers’ understanding of the materials, you may also include that in your justification. Part 2 is divided into four steps which correspond to each of the four elements being inventoried; see the following table.

PRIME at a Glance

<table>
<thead>
<tr>
<th>Standards Framework Elements Included in the PRIME Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Asset-based Philosophy</td>
</tr>
<tr>
<td>A. Representation of Student Assets and Contributions</td>
</tr>
<tr>
<td>2. Academic Language</td>
</tr>
<tr>
<td>A. Discourse Dimension</td>
</tr>
<tr>
<td>B. Sentence Dimension</td>
</tr>
<tr>
<td>C. Word/Phrase Dimension</td>
</tr>
<tr>
<td>3. Performance Definitions</td>
</tr>
<tr>
<td>A. Representations of Levels of Language Proficiency</td>
</tr>
<tr>
<td>B. Representations of Language Domains</td>
</tr>
<tr>
<td>4. Strands of Model Performance Indicators and the Standards Matrices</td>
</tr>
<tr>
<td>A. Connection to State Content Standards and WIDA Language Development Standards</td>
</tr>
<tr>
<td>B. Cognitive Challenge for All Learners at All Levels of Language Proficiency</td>
</tr>
<tr>
<td>C. Supports for Various Levels of Language Proficiency</td>
</tr>
<tr>
<td>D. Accessibility to Grade Level Content</td>
</tr>
<tr>
<td>E. Strands of Model Performance Indicators</td>
</tr>
</tbody>
</table>
PRIME Part 1: Provide Information about Materials

Provide information about each title being correlated.

Publication Title(s): Ready Classroom Mathematics

Publisher: Curriculum Associates

Materials/Program to be Reviewed: Teacher’s Guide (TG)

Tools of Instruction included in this review: Examples taken from Unit 1, Grade 4

Intended Teacher Audiences: Curriculum Advisors, Classroom Teachers, Content Specialists, Language Teachers, Resource Teachers, and Paraprofessionals

Intended Student Audiences: Grades K-5

Language domains addressed in material: Listening, Speaking, Reading, and Writing

Check which set of standards will be used in this correlation:

☐ WIDA Spanish Language Development Standards
☒ WIDA English Language Proficiency Standards

WIDA Language Development Standards addressed: (e.g. Language of Mathematics). The Language of Mathematics, Social and Instructional Language,

WIDA Language Proficiency Levels included: Ready Classroom Mathematics uses levels similar to WIDA’s Language Proficiency Levels, which are referenced in the program’s differentiated instruction. Program levels include Beginning (level 1), Intermediate (Levels 2-3), and Advanced/Advanced High (Levels 4-5).

Most Recently Published Edition or Website: curriculumassociates.com
In the space below explain the focus or intended use of the materials:
Ready Classroom Mathematics helps build strong mathematical habits in students through discourse-based instruction. The Try, Discuss, Connect instructional routine supports teachers in facilitating meaningful mathematical discourse in a manageable way that engages all learners. The lessons support learning through multiple methods and opportunities for engagement, representation, action, and expression. Each lesson provides multiple entry levels, activities, and “differentiation points” that allow teachers to flexibly address differentiation needs within each lesson.
PRIME Part 2: Correlate Your Materials

1. Asset-Based Philosophy

A. Representation of Student Assets and Contributions
The WIDA Standards Framework is grounded in an asset-based view of students and the resources and experiences they bring to the classroom, which is the basis for WIDA’s Can Do Philosophy.

1) Are the student assets and contributions considered in the materials?
 Yes No

2) Are the student assets and contributions systematically considered throughout the materials?
 Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) Ready Classroom Mathematics considers student assets and contributions in a variety of ways throughout each lesson. Each lesson has a “Connect to Family, Community, and Language Development” section where students receive activities and instructional supports that are designed to “provide opportunities to foster school, family, and community involvement and partnerships.” See an example here:
Each lesson also has a “Discuss It” section which encourages partner and whole group discussions related to the content of the lesson. Included in the Teacher’s Guide are guiding questions for the teacher to use to help facilitate these discussions. See an example below:

2) Students assets and contributions are systematically considered throughout the materials. In addition to the features listed above, each lesson contains the following areas:

At the beginning of each lesson, the Explore section builds prior and background knowledge:
The Develop section contains an area for the students to reflect on the lesson through writing and discuss with a partner.

2. Academic Language

WIDA believes that developing language entails much more than learning words. WIDA organizes academic language into three dimensions: discourse, sentence, and word/phrase dimensions situated in sociocultural contexts. Instructional material developers are encouraged
to think of how the design of the materials can reflect academic language as multi-dimensional.

A. Discourse Dimension (e.g., amount, structure, density, organization, cohesion, variety of speech/written text)

1) Do the materials address language features at the discourse dimension in a consistent manner for all identified proficiency levels?
 Yes No

2) Are the language features at the discourse dimension addressed systematically throughout the materials?
 Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) The materials address language features at the discourse level for all identified proficiency levels. The program is designed to incorporate partner, small, and large group discussions into daily instruction. The “Discuss It” section often provides questions and language starters to assist conversations. See an example below:

 ![Discuss It]

Language differentiation strategies are located in the TG and are organized by levels similar to WIDA’s English Language Proficiency levels. The information in the chart includes strategies by domain to help support students as needed. See an example below of the Differentiated Instruction Chart:
2) Language features at the discourse level are presented systematically throughout the program. Lessons begin with discussions that encourage prior knowledge connections and build background knowledge. Unit and lesson opening activities include multiple opportunities for students to practice at the discourse level. See examples below:
Additionally, there is a Family Connection section in each lesson which includes a letter to the family outlining background information, math vocabulary and an activity. Part of this section also includes a “Math Talk at Home” area where the family can talk with their student about something related to the lesson. This section also includes conversation starters, as seen here:

![Math Talk at Home](image)

B. Sentence Dimension (e.g., types, variety of grammatical structures, formulaic and idiomatic expressions; conventions)

1) Do the materials address language features at the sentence dimension for all of the identified proficiency levels?
 Yes No

2) Are the language features at the sentence dimension appropriate for the identified proficiency levels?
 Yes No

3) Are the language features at the sentence dimension addressed systematically throughout the materials?
 Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) Ready Classroom Mathematics addresses language features at the sentence dimension for all of the identified language proficiency levels. Leveled differentiation for language learners is featured in each lesson in the TG. The Differentiated Instruction Chart has three sections, with some level overlap, that assists teachers in planning instruction. See the chart below for an example that includes sentence frames which can be used for additional support:
2) The language features at the sentence dimension are appropriate for the identified proficiency levels. Each lesson will have a Differentiated Instruction Chart (shown above) which allows for differences in language support and structure by proficiency level band.

3) The language features at the sentence dimension are addressed systematically throughout the materials. The lessons are structured into three sessions labeled Explore, Develop (more than one Develop may be found in each lesson), and Refine. Most sessions follow the systematic routines of Start, Try It, Discuss It, Model It, Connect It, Apply It, and Close. The routines includes sentence level instruction in the targeted language domains. See an example below:
C. Word/Phrase Dimension (multiple meanings of words, general, specific, and technical language)

1) Do the materials address language features at the word/phrase dimension in a consistent manner for all identified proficiency levels?
 Yes No

2) Are words, expressions, and phrases represented in context?
 Yes No

3) Is the general, specific, and technical language appropriate for the targeted proficiency levels?
 Yes No
4) Is the general, specific, and technical\(^2\) language systematically presented throughout the materials?

Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) The materials address language features at the word/phrase dimension in a consistent manner for all identified proficiency levels. The TG contains a page entitled “Supporting Math and Academic Vocabulary Development.” This page explains the importance of using academic and math-specific vocabulary in discussions through instruction. It gives guidance on using the “Build Your Vocabulary” routine that is found at the beginning of each unit. See an example here:

![Supporting Math and Academic Vocabulary Development](image-url)

At the beginning of each lesson, objectives list new vocabulary and reviewed vocabulary.

\(^2\)General language refers to words or expressions not typically associated with a specific content areas (e.g., describe a book).
Specific language refers to words or expressions used across multiple academic content areas in school (chart, total, individual).
Technical language refers to the most precise words or expressions associated with topics within academic content areas in school and is reflective of age and developmental milestones.
Vocabulary is then presented in context with graphic and interactive supports and differentiated instruction appropriate to the targeted proficiency levels. Word study instruction like understanding cognates, root words, and multiple meaning words is also addressed in language development activities throughout each session. See examples below:

2) Words, expressions, and phrases are presented in context throughout the materials. The Ready Classroom Mathematics uses peer, group, and whole class discussions and cooperative activities to present vocabulary in context. See an example below:
3) General, specific, and technical language is appropriate for the identified proficiency levels within the Ready Classroom Mathematics program. Specific and technical language is introduced and practiced throughout each lesson, and the program also uses general language in the “Connect to Family, Community, and Language Development” section found at the beginning of each lesson. See an example of the family letter that accompanies each lesson here:
4) General, specific, and technical language are presented in a consistent and systematic manner throughout the materials. Specific and technical language is presented in the math content, vocabulary, and academic vocabulary lessons. General language is practiced throughout the lesson sessions in peer, group, and whole class discussions and cooperative activities that practice language and new content.

3. Performance Definitions
The WIDA Performance Definitions define the WIDA levels of language proficiency in terms of the three dimensions of academic language described above (discourse, sentence, word/phrase) and across six levels of language development.

A. Representation of Levels of Language Proficiency

1) Do the materials differentiate between the language proficiency levels?
Yes No

2) Is differentiation of language proficiency developmentally and linguistically appropriate for
Is differentiation of language systematically addressed throughout the materials?

Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) Ready Classroom Mathematics uses levels similar to WIDA’s Language Proficiency Levels, which are referenced in the program’s differentiated instruction. Levels include Beginning (Level 1), Intermediate (Levels 2-3), and Advanced/Advanced High (Levels 4-5). The beginning of each Unit in the TG shows a chart with the ELL Language Expectations as they connect to a learning standard that is addressed in the Unit. See an example here:

2) Differentiation is developmentally and linguistically appropriate for students working above and below level. Differentiation targets language lessons as well as provides teachers with alternative teaching strategies for challenging concepts. View example here
of leveled differentiation within a lesson:

3) Differentiation of language is systematically addressed throughout the materials. The examples above are representative of what can be found in each lesson of the program.
B. Representation of Language Domains
WIDA defines language through expressive (speaking and writing) and receptive (reading and listening) domains situated in various sociocultural contexts.

1) Are the language domains (listening, speaking, reading, and writing) targeted in the materials? Yes No

2) Are the targeted language domains presented within the context of language proficiency levels? Yes No

3) Are the targeted language domains systematically integrated throughout the materials? Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) All four language domains are targeted in the materials. The Units open with a chart that connects language to the content through the four language domains. See an example here:

All four domains are integrated into each lesson. Listening and speaking are practiced many times through discussion and cooperative learning activities. Reading is represented...
throughout using supports such as graphics, illustrations, and models. Writing activities are built into the lessons through graphic organizers, practice that requires sentence-level explanation, and the routine Reflect feature.

2) The language domains are presented within the context of language proficiency levels. Each lesson contains multiple English Language Differentiated Instruction charts which provide targeted domain support and instruction for each session by proficiency level band. See an example below:

3) Listening, Speaking, Reading, and Writing are systematically integrated throughout the materials. In addition to the chart mentioned above, students discuss, collaborate, read and answer problems, and use writing lessons to brainstorm and reflect in repeating instructional routines. See examples below of each domain and how it is represented in a lesson:

Reading:

![Reading Activity](image-url)
Writing:

1. Write the numbers 23,643 and 23,987 so that they line up by place value. Explain how to line them up.
 - Write the numbers one above the other. Make sure the digits for each place line up. The commas should also line up.
 - In what place-value position do you begin comparing the two numbers? You start with the greatest place value. For these numbers, it is the ten-thousands place.
 - What is the first place in which the numbers are different? the hundreds place.
 - Explain how to compare the numbers. Then write the comparison using > or <. Tell which game had fewer fans.
 - Possible explanation: Because the ten thousands and thousands are the same, compare the hundreds. 6 hundreds < 9 hundreds, so 23,643 < 23,987. Last week’s game had fewer fans.

5. Reflect
 - Look back at your Try It, strategies by classmates, and Model It. Which models or strategies do you like best for comparing multi-digit numbers? Explain.
 - Possible explanation: I like the strategy of using a place-value chart because it has labels that help me see the value of each digit. I can start at the left and look down each column in the chart to compare the digits.

Listening and Speaking:

Try It
Possible student work:
Sample A

<table>
<thead>
<tr>
<th>Ten Thousands</th>
<th>Thousands</th>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

23,643 < 23,987
Last week’s game had fewer fans.

Sample B
Ten thousands and thousands are the same. 600 < 900, so 23,643 < 23,987.
Last week’s game had fewer fans.

Discuss It
Ask your partner: Do you agree with me? Why or why not?
Tell your partner: I started by….
4. The Strands of Model Performance Indicators and the Standards Matrices

The Strands of Model Performance Indicators (MPIs) provide sample representations of how language is processed or produced within particular disciplines and learning contexts. WIDA has five language development standards representing language in the following areas: Social and Instructional Language, The Language of Language Arts, The Language of Mathematics, The Language of Science, The Language of Social Studies as well as complementary strands including The Language of Music and Performing Arts, The Language of Humanities, The Language of Visual Arts.

The Standards Matrices are organized by standard, grade level, and domain (Listening, Speaking, Reading, and Writing). The standards matrices make an explicit connection to state academic content standards and include an example for language use. Each MPI includes a uniform cognitive function (adopted from Bloom’s taxonomy) which represents how educators can maintain the cognitive demand of an activity while differentiating for language. Each MPI provides examples of what students can reasonably be expected to do with language using various supports.

A. Connection to State Content Standards and WIDA Language Development Standards

1) Do the materials connect the language development standards to the state academic content standards?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

2) Are the academic content standards systematically represented throughout the materials?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

3) Are social and instructional language and one or more of the remaining WIDA Standards present in the materials?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) Ready Classroom Mathematics was designed around the grade-level content standards and the Standards for Mathematical Practice that are common to many states. The program focuses on building conceptual understanding and procedural fluency, develops mathematical reasoning through lessons that use real-world problem solving, and provides ongoing opportunities for higher-order thinking, cooperative dialogue,
and mathematical discourse.

2) The Standards for Mathematical Practice (SMPs) found in each lesson are listed in the Lesson Overview at the beginning of each lesson. See an example below:

![Standards for Mathematical Practice (SMP)](image)

SMPs 1, 2, 3, 4, 5, and 6 are integrated in every lesson through the Try-Discuss-Connect routine.*

In addition, this lesson particularly emphasizes the following SMPs:
2. Reason abstractly and quantitatively.
6. Attend to precision.
7. Look for and make use of structure.

*See page 11 to see how every lesson includes these SMPs.

3) Although not explicitly stated as WIDA’s Social and Instructional Language, the program does incorporate this along with the Language of Mathematics throughout the program. Social and Instructional language is used in the practice and application of all skills and
standards taught through cooperative dialogue and mathematical discourse. See examples of this below:

B. Cognitive Challenge for All Learners at All Levels of Language Proficiency
1) Do materials present an opportunity for language learners to engage in various cognitive functions (higher order thinking skills from Bloom’s taxonomy) regardless of their language level?

 Yes No

2) Are opportunities for engaging in higher order thinking systematically addressed in the materials?

 Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) The materials present multiple opportunities for language learners to engage in various cognitive functions at all proficiency levels. Students practice understanding, comparing, and applying new content, as well as complete activities that require evaluation, organizations, synthesizing, and reflecting. These activities are presented in writing and speaking activities that utilize supports that differentiate content for all levels. For example, at the end of most lessons is a reflective writing activity which tests depth of knowledge. In the TG, the Deepen Understanding feature uses the Standards of Mathematical Practices to extend content and broaden connections. See examples here:

![Deepen Understanding](image)

2) Opportunities for engaging in higher order thinking are systematically addressed in the program through routines like Model It, Try It, Discuss It, Connect It, and Reflect. The TG provides additional opportunities to extend and deepen content through differentiated instruction. View an example here:
C. Supports for Various Levels of Language Proficiency

1) Do the materials provide scaffolding supports for students to advance within a proficiency level?
Yes No

2) Do the materials provide scaffolding supports for students to progress from one proficiency level to the next?
Yes No

3) Are scaffolding supports presented systematically throughout the materials?
Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) The materials provide scaffolding supports for students to advance within a proficiency level. The instructional routine uses models, structured practice, and independent practice to support and then gradually release the responsibility to the students. Typical supports found within a lesson include language frames for discussions and writing activities, visuals, models, various graphic organizers, cooperative learning, and hands-on learning. Instructions and text-based problems use visual supports like illustrations, visual models, photographs, captions, and labels to aid comprehension. In the TG, multi-level differentiation strategies are provided throughout the lessons to assist learners working at, below, and above grade level. See an example here:
2) The scaffolding supports described above also support the progression from one proficiency level to the next. The Differentiated Instruction Chart found in each lesson, provides opportunities for reinforcement, extension or review, depending on where the students are in their mathematical understanding. Additionally, the ELL Differentiated Instruction Charts found throughout the program, contain proficiency levels that overlap, allowing for a natural progression linguistically as students are ready. See an example of this here:

3) Scaffolding supports are presented systematically throughout the Ready Classroom Mathematics program. In addition to the examples above, the following examples of scaffolding supports from Lesson 3 can be found in each lesson throughout the program:

Graphic and Visual Supports:
Cooperative and Hands-On Activities:

Prepare for Rounding Whole Numbers

What Is It?
Rounding a number to the nearest thousand means finding the thousand it is closest to.

What I Know About It
To round a number to the nearest thousand, look at the hundreds. If there are less than 5 hundreds, round down. If there are 5 or more hundreds, round up.

Examples
- 11,000 is rounded to 10,000.
- 11,619 is closer to 12,000 because it is more than 5 hundreds.
- 34,339 rounded to the nearest thousand is 34,000.

Apply It
Use what you just learned to solve these problems.

1. Mr. Ruiz’s company collects 32,376 water bottles to recycle. Mr. Ruiz rounds this amount to the nearest ten thousand. What number does Mr. Ruiz round the number of water bottles to? Show your work.
 - Possible student work:

 32,376 is between the two ten thousands: 30,000 and 40,000.

 32,376 is closer to 30,000.

 Solution: Mr. Ruiz rounds to 30,000.

2. John bought 468,500 books this year. To the nearest thousand, how many books did the store sell? Show your work.
 - Possible student work:

 468,500 is between 468,000 and 469,000.

 Rounding 468,500 up to 469,000 because there is a 5 in the hundreds place.

Round Whole Numbers

Do this activity with your child to round whole numbers.

- Materials: 9-digit cards, online, bag, tokens shown below
- Place the cards in a bag. Each player takes turns.
 - Deal 3 digit cards and record them in the table as one digit number in the order shown. Draw again if it’s the first card drawn.
 - Example: 3, 4, 5. Round record 15, 25.
 - Round the number to the nearest thousand.
 - Example: 27,419 rounds to 27,000. Record 27,000 in the table.

Hands-On Activity

If . . . students are unsure about a general method for rounding five-digit numbers to the nearest ten thousand, then . . . use the activity below to develop understanding of using place value concepts to round.

Materials
For each pair: Activity Sheet Digit Cards
- Have one student pick 5 cards and use the digits to form a five-digit number.
- Have the partner write the number, the two ten thousands that the number lies between, and the number halfway between the two ten thousands.
- Ask the partner to round the number to the nearest ten thousand. Prompt the partner to compare the number to the halfway number to determine which of the two ten thousands to round to.
- Have the first student explain why their partner’s method works.
- Have students switch roles and repeat the activity for other numbers.

D. Accessibility to Grade Level Content

1) Is linguistically and developmentally appropriate grade-level content present in the materials?
 - Yes
 - No

2) Is grade-level content accessible for the targeted levels of language proficiency?
 - Yes
 - No
3) Is the grade-level content systematically presented throughout the materials?

Yes
No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) In *Ready Classroom Mathematics*, all four language domains are systematically practiced throughout each lesson. Before each unit and within the lessons, both content and language objectives are listed in the TG. The *Learning Progression* feature describes where the content is leading and reviews what was learned in previous lessons. See an example here:

2) Grade-level content is made accessible for the targeted proficiency levels through differentiated instruction and instructional supports. Instructional supports include interactive, graphic, and sensory scaffolds like using manipulatives, cooperative activities, discussions, graphic organizers, and illustrations. Differentiated instruction for language is
3) Grade-level content is systematically presented throughout the materials. Each Unit presents a flow chart of the lessons students are building upon, the lessons to be addressed in the unit and then the lessons students are preparing for next. The flow chart contains the grade level, the lesson number and lesson title. See an example here:
E. Strands of Model Performance Indicators

1) Do materials include a range of language functions? Yes No

2) Are the language functions incorporated into a communicative goal or activity? Yes No

3) Do the language functions support the progression of language development? Yes No

Justification: Provide examples from materials as evidence to support each “yes” response for this section. Provide descriptions, not just page numbers.

1) The Ready Classroom Mathematics materials contain a range of language functions throughout the program. Language functions like compare, draw, discuss, label, repeat, restate, and apply are used through direct oral instruction, written directions, academic discussions and other activities.

2) The language functions listed above as well as others are always incorporated into a communicative goal or activity throughout the units. Some of the activities that are found throughout the lessons include language functions in their title, like the Discuss It section seen here:

```
DISCUSS IT
Support Partner Discussion
To reinforce concepts of place value, encourage students to use thousands, hundreds, tens, and ones as they talk to each other.
Look for, and prompt as necessary, for understanding of:
• breaking apart a number to show the place value of each of its digits
• the value of the digit in each place in a number
• the concepts of greater than and less than
```

See below other examples of how language functions are incorporated into activities in the program:
3) Language functions presented in the materials support the progression of language development. In the English Language Differentiated Instruction charts found throughout the lessons, the language functions presented increase in difficulty through the proficiency levels. In the example below, the students in Levels 1-3 will be pointing or identifying numbers, at Levels 2-4 they will be discussing with partners and at Levels 3-5 they will be justifying their reasoning.

Prepare for Comparing Whole Numbers

1. Think about what you know about comparing. Fill in each box. Use words, numbers, and pictures. Show as many ideas as you can. Possible answers:

 What is it?
 - Deciding whether a number is greater than, less than, or equal to another number

 What I know about it
 - < means “less than”
 - > means “greater than”
 - = means “equal to”

Examples

1. 1,237 > 987 because 1,237 has more digits.
2. The thousands are the same.
3. 1 hundred < 4 hundreds
4. 1,123 < 1,421

Circle the lesser price. Explain how using place value helps you know this is the lesser price.

- $6.52
- $12.96

English Language Learners: Differentiated Instruction

Levels 1 - 3

- **Listening/Speaking**: Point to and read. Try it aloud. Underline information to be recorded on a place-value chart. Ask students to point to or say the number they think is greater. Ask students to record the number of points for Team A and Team B on a place-value chart. Point to the 1’s in the thousands column. Say: Each number has 1 thousand. Point to the hundreds column. Say: Team A has 3 hundreds. Team B has 2 hundreds. Point to Team A on the chart. Say: Team A has the greater number of points. Write 1,347 > 1,295. 1,347 is greater than 1,295. Circle >. Say: This symbol means “greater than.”

Levels 2 - 4

- **Listening/Speaking**: Choral read Try It with students. Ask: Which team has the greater number of points? How do you know? Have students share their reasoning with partners. Record the number of points for Team A on a place-value chart. Think aloud as you write the number: Team A has 1,347 points. Write 1 in the thousands place, 3 in the hundreds, 4 in the tens, and 7 in the ones. Have partners record the number of points for Team B on the chart. Encourage them to think aloud as they record the number. Pointing to each column, say: Each team has 1 thousand. Team A has 3 hundreds, and Team B has 2 hundreds. Which number is greater? Write 1,347 > 1,295. 1,347 is greater than 1,295.

Levels 3 - 5

- **Reading/Speaking**: Have students read Try It with partners. Ask them to discuss which number they think is greater and to justify their reasoning. Have students record the numbers on a place-value chart. Ask: How are the numbers the same or different on your chart? Have partners discuss their observations and reasoning. Remind students to use the vocabulary in their discussions: place value, thousands, hundreds, tens, ones, greater than, and less than. Ask: How can you compare these numbers using a mathematical symbol? If students need additional support, write the symbols >, =, and <. Ask: Which symbol means “greater than” (>)?